

Developing Highly Predictable System Behavior in
Real-Time Battle-Management Software

Dale Scott Caffall
Missile Defense Agency
7100 Defense Pentagon

Washington, D.C. 20301-7100, USA
butch.caffall@mda.osd.mil

James Bret Michael, Man-Tak Shing

Naval Postgraduate School
833 Dyer Road

Monterey, California 93943-5118, USA
{bmichael, shing}@nps.edu

ABSTRACT

This paper addresses the need for development of highly de-
pendable systems-of-systems for missile defense, which in-
volves C4 systems, which are traditionally non-real-time, and
weapon systems, which typically operate under real-time con-
straints. If we are to match the performance of weapon systems
and avoid the negative impact of forcing synchronization of
battle manager software with weapon systems for messaging,
then we must develop the battle manager as real-time software.
We present a new approach for developing battle-management
software as a real-time set of system functionality that addresses
warfighter usage. To achieve the level of desired predictable
battle-management behavior, we maintain that it is essential to
develop a formal representation that captures the desired battle
manager system behavior and test the formal representation
against the expected battle-management properties. Further-
more, we assert that it is critical to develop the battle manager
as a real-time software-intensive system to ensure the schedula-
bility of battle-management tasks and provide for concurrent
execution of such tasks where applicable.

Keywords: Battle Management Kernel, Missile Defense, Sys-
tem-of-Systems

1. INTRODUCTION

During the past decade, the U.S. Department of Defense (DoD)
shifted military tactics from the traditional war of attrition to a
transformational concept of full-spectrum dominance: the abil-
ity of U.S. forces, operating unilaterally or in combination with
multinational and interagency partners, to defeat any adversary
and control any situation across the full range of military opera-
tions. There is an urgent need for DoD to develop a global
missile defense system to protect the U.S. and its allies against
hostile missile attack. This paper describes a new approach for
developing battle-management software as a real-time set of
system functionality that addresses warfighter usage. Section 2
reviews the challenges in missile defense system development.
Section 3 presents an overview of the proposed paradigm. Sec-
tion 4 highlights the formal approaches for developing the battle
management kernel. Section 5 discusses the proposed approach
and section 6 draws the conclusions.

2. STATEMENT OF THE PROBLEM

In [10], Parnas outlines six major characteristics of the battle-
management software in the Strategic Defense Initiative (SDI)

(known today as the Ballistic Missile Defense) program; these
issues are as relevant today as when the were first raised:

1. The battle-management software must identify, track, and
direct weapons towards targets whose characteristics may
not be known with certainty until the moment of battle.
The battle-management software must discriminate the
threat objects from decoys and debris.

2. The battle-management computing will be accomplished
through a network of computers that are connected to
sensors and weapons as well as other battle-management
computers. The behavior of the battle-management
software cannot be predicted with confidence given the
actual configuration of weapons, sensors, and battle
managers at the moment of battle.

3. Developers cannot test the battle-management software
under realistic conditions prior to actual use of the soft-
ware.

4. The duration of the defense engagement will be short: it
will not allow for either human intervention or debug-
ging the software to overcome software faults at runtime.

5. The battle-management software will have absolute real-
time deadlines for the computation that will consist of
periodic processes to include detecting and identifying
potential threat missiles, assigning a weapon to engage
the threat missile, and providing an assessment of the in-
terceptor-threat missile engagement. Because of the un-
predictability of the computational requirements of each
process, developers cannot predict the required resources
for computation.

6. The missile defense system will include a large variety of
sensors, weapons, and battle-management components
for which all will be large, complex software systems.
The suite of weapons and sensors will increase in number
as the development progresses. The characteristics of
these future weapons and sensors are not well defined
and will likely remain fluid for many years. Addition-
ally, all weapons and sensors will be subject to change
independently of each other. As such, the battle-man-
agement software must integrate numerous dynamic
software systems to the extent that has never before been
achieved.

System-of-systems functional and performance expectations of
the users continue to increase as the acquisition community
continues to develop and field the products of C4 systems and
weapon-systems integration. The class of systems in which
Command and Control (C2) and battle-management systems are
contained is called Command, Control, Communications, and

Computers (C4) systems. Typically, C4 systems are non-real-
time systems. Traditionally, weapon systems are real-time sys-
tems. If we are to match the performance of the weapon systems
and avoid the negative impact of forcing synchronization of the
battle manager with the weapon system for messaging, then we
must develop the battle manager as real-time software.

As a rule, battle management is still executed at the system level
rather than the desired system-of-systems level. We define a
system-of-systems as an amalgamation of legacy systems and
developing systems that provide an enhanced military capability
greater than that of any of the individual systems within the
system-of-systems.

Another factor that contributes to the challenge involved in
predicting battle-management behavior is the acquisition prac-
tices currently employed in DoD. The increased pressure to
rapidly move product into the operational battlespace tends to
channel program managers into focusing on achieving function-
ality as quickly as possible. As such, the development com-
munity responds with a hurried and oftentimes inadequate de-
sign phase and follows with an intense period of coding. In the
rush to rapidly develop a product, one can fall into the trap of
exclusively seeking some level of achieved capability while
ignoring the behavior of the software [2].

The current state-of-the-practice for developing systems-of-
systems tends to be ad hoc as discussed in [11]. Given that the
interconnected battle-management solutions in systems-of-
systems are separately designed and developed on different
operating platforms, predicting battle-management behavior of
the systems-of-systems is not possible; this issue was also
raised, in a broader context, in [9].

Because we cannot readily predict the system behavior of legacy
battle-management systems, the requirements for such systems
tend to be treated as part of a new development. While the ba-
sic five functions do not change from system to system and from
year to year, we choose to acquire a new battle-management
system as a new development. Almost exclusively changes are
to the sensors used to collect information for the warfighters,
the weapons used to engage threat targets, and the rules of en-
gagement (ROEs) established in both the planning and the C2
functions. Specific features within the battle-management soft-
ware will change over time (e.g., discrimination algorithms,
correlation algorithms, feature-aided tracking); however, one
can isolate those features in components that can be inter-
changed when developers are prepared to introduce new com-
ponents (e.g., new types of weapon systems) into the battle-
management software.

3. A NEW PARADIGM

We believe that it is possible to develop a globally distributed,
real-time software-intensive battle-management system that
exhibits highly predictable system-software behavior, in which
the system receives sensor information from land, sea, air, and
space, and commits land-, sea-, air-, and space-based weapons
to fire at identified targets. Furthermore, we believe that it is
possible to employ linear temporal logic and model checking to
a globally distributed, real-time battle-management system to
aid in the realization of desired system behavior to include the
weapons-commit logic. We argue that the major benefits of our
paradigm are that it will provide the following:

• An engineering-based approach for developing battle-
management kernels (BMK) for missile-defense and
other types of real-time systems used by combatant
commands.

• Acquisition organizations with a means for develop-
ing real-time software-intensive distributed systems
that exhibit a high degree of predictability of system
behavior.

3.1 Battle Management Kernel

The BMK is intended to serve as “glueware” between software
applications unique to each battle-management domain, and the
sensors, C2 systems, and weapon systems in that battle-man-
agement domain.1 That is, the BMK will execute the five kill-
chain functions by calling upon various components for com-
putation, as described in [3].

Rather than point-to-point interfaces, we will develop type in-
terfaces that define the behavior of each interface and the re-
quired specifications to realize each interface. Further, we will
develop and maintain the interfaces as separate configurable
items to preserve the identity of the interface and to minimize
the opportunity for multiple versions of the interface. Addition-
ally, it is important that the interface advertise its operations,
while not specifying implementations of its operations [5].

For ease of integration and maintainability, we will develop
software components for the features that typically experience
the majority of changes. In theory, developers can realize a
component-based framework with less effort and without un-
wieldy upgrade cycles as compared to fully integrated, mono-
lithic software solutions. Additionally, a component-based
framework allows for tailoring of the framework to address
specific user needs [13]. For this paper, we identify software
components that include enforcing rules of engagement, con-
ducting discrimination and correlation, performing feature-
aided tracking, and estimating launch, impact, and intercept
points.

A BMK is similar in purpose to an operating system (OS) ker-
nel in that both kernels manage resources shared by competing
entities. In the case of an OS kernel, the competing entities are
computer processes vying for processor and memory resources.
In the case of a BMK, the competing entities are all of the com-
ponents of the system-of-systems that comprise the battle-
management system, such as the C2 and weapon systems. The
components in the kernel are expected to be stable compared to
the other components in the system-of-systems. For instance,
device drivers tend to be updated frequently and therefore in
principle should not be included in the OS kernel. If they are
included (i.e., the case of a monolithic kernel), and even worse,
tightly coupled to OS management functions, then it becomes
challenging to make modifications to the kernel that do not
affect other parts of the kernel. We would like to apply this
same reasoning to BMK in order to simplify the design and
maintenance of the kernels.

1 We use the term “glueware” rather than “middleware” because

we intend for the BMK to serve more that just as a software
layer that provides both a programming abstraction and trans-
parency (of the underlying heterogeneous systems).

We also draw a parallel between BMK and safety kernels. The
functions to be included in a safety kernel are those that must be
performed to maintain a safe system state or bring a system back
into a safe state after the occurrence of a safety-critical event.
No other functions may be included in a safety kernel. An
automated train protection (ATP) system is an example of a
safety kernel. Such kernels are well documented, validated, and
verified before being considered for certification and accredita-
tion. We view battle-management kernels in a similar light:
they must work as advertised because the ability of the entire
system-of-systems to be able to conduct warfare in the BMD
battlespace is dependent on the BMK.

3.2 Capability-based Acquisition Process

In the context of DoD capability-based acquisition, the govern-
ment specifies the capabilities for the system that are needed by
the warfighter. Government contractors specify and refine the
capabilities into system requirements, architectures, designs,
and other system artifacts. In [2], we demonstrate how the Uni-
fied Modeling Language (UML) can be used to refine a system-
of-systems. In this paper we extend our earlier investigation to
include the explicit treatment of linear temporal logic for devel-
oping the BMK functional specifications and verifying the
specifications using model checking.

In this approach, one starts by developing a framework that
contains the proposed BMK along with the battle-management
software components that will experience the most change dur-
ing the acquisition life cycle of a battle-management system.
We envision software engineers developing the BMK as a real-
time set of system functionality that addresses its use by war-
fighters, starting from a high-level statement of capabilities and
refining these statements into successively lower levels of sys-
tem artifacts. We define the BMK to be the software that con-
tains the basic functions of battle management that will remain
stable over time. Derived from the kill chain [3], these basic
battle-management functions are called tasks, and will manage
the use of the system’s computing resources to ensure that all
time-critical, battle-management events are processed as effi-
ciently as possible.

As the initial step to the BMK development, we are performing
a domain analysis of the battle-management functions. This
involves deriving warfighter usage requirements from battle-
management use cases. We are refining the use cases concur-
rently with the development of sequence diagrams—these are
used to capture messaging requirements among the derived
classes from the use cases. We are using the aforementioned
artifacts as the basis for creating state diagrams of the BMK,
with the aim of identifying the desired battle-management be-
havior. The final step of the domain analysis will be to identify
and verify assumptions on battle-management operations, in
support of developing BMK specifications.

From the iterative review and refinement of the aforementioned
artifacts, we will develop detailed specifications that focus on
defining BMK behavior and achieving battle-management
goals.

4. FORMAL APPROACH TO BMK DESIGN

Our approach includes the verification of the functional specifi-
cations with the use of model-checking tools to determine the
degree of predictability of system behavior with respect to state

transitions and tolerance to battlespace environmental variables.
The verification will focus on ensuring that the BMK can both
meet the specifications and exhibit the desired behavior. We
will design test oracles that contain the full range of battle-
management variables that are both within and outside the ex-
pected range of operational values for ballistic missile defense.

4.1 Temporal Logic

We will construct a set of specifications using temporal logic
that will serve as a model of the BMK. The goal is to achieve a
greater degree of clarity and focus in the specification of the
desired BMK behavior as compared to that obtained from the
traditional method of simply listing the system requirements.

We will develop a sufficient amount of information to automati-
cally produce test cases for the implementation. Otherwise, we
run the risk of developing so-called “cartoon models” that are
only useful for drafting and refining potential solutions. We
will develop test-ready models of the BMK. According to
Binder [1], in order to be testable, a model should contain all
the features of the system-under test (in the present context, the
BMK), preserve sufficient detail that is critical for discovering
faults, and faithfully represents the essential states, actions, and
transitions in the state diagram. If the BMK model is to be
useful for this effort and in future acquisition efforts, it must
exhibit the following properties outlined in [12]: appropriate
level of abstraction, high degree of understandability, high
measure of accuracy, and high level of predictiveness.

We must ensure that the BMK model faithfully represents the
behavior of battle-management operations. We must ensure
that the BMK states are reached appropriately and the transition
triggers are reflective of the projected BMD battlespace. For
example, the model must transition from the state in which
tracking occurs to the state in which a weapon assignment oc-
curs each and every time the model is presented with the ap-
propriate transition events. Just as important, the model must
not transition for events other than what was designed for the
BMK.

We are using temporal logic to define assertions for the BMK
specifications. We anticipate that these assertions will yield
specifications that are verifiably consistent and accurate, and in
turn, verifiably predictable behavior of the BMK.

It is our experience that the vast majority of engineers involved
with acquisition of software-intensive systems are not familiar
with software formalisms. Additionally, we assert that few of
the many system engineers in acquisition could follow temporal
logic without some level of instruction. As such, software engi-
neers may choose to minimize the use of typical temporal logic
symbols and attempt to develop the specifications in as close to
natural language as possible while still maintaining the degree
of rigor that temporal logic lends to specification development.2

This approach is necessary to gain buy-in from system engi-
neers and engineering managers. Acquisition efforts require

2 Other alternatives to presenting system engineers and program

managers with mathematical formulas include but are not lim-
ited to tabular and graphical representations, along with simu-
lation and animation (e.g., animate the transitions among
states in a statechart as a simulation of a system progresses).

significant commitments of human and financial capital. Intro-
ducing new acquisition methods to replace that which is famil-
iar and comfortable is generally viewed as risky and foolish.
Proposed changes must be readily evident to system engineers
and engineering managers, or the proposed changes will not be
adopted. As a partial example of our approach, consider the
assignment of a weapon to a tracked object:

User Goal: Assign a Weapon to a Tracked Object
Narrative: The BMK must assign a weapon to engage a threat
object before it impacts or detonates over a pre-designated de-
fended area. The BMK must determine whether the tracked
object is a ballistic-missile threat. The BMK must determine
whether the predicted impact point is within the defended area
as defined by military planners. The BMK must determine
which weapons are available. The BMK must determine which
weapon(s) can engage the tracked object. The BMK must as-
sign the appropriate weapon to prosecute the engagement of the
tracked object.

The logic to assign a weapon to a tracked object is as follows:

Weapon assigned to track object is true iff:
 (Tracked object is a ballistic-missile threat) ∧
 (Predicted impact point is within defended area) ∧
 (Weapon is available) ∧
 (Weapon interceptor capability is adequate)

We would outline the specification as follows:

Variables:
Boolean: Weapon_Assigned
// Weapon assigned to tracked object is true
Boolean: Ballistic_Threat
// Tracked object is ballistic-missile threat
Boolean: IPP_Within_Defended_Area
// This statement is true if the predicted impact point lies inside
the physical dimensions of the defended area.
Boolean: Weapon_Available
// True if one or weapons are capable of immediately launching
an interceptor.
Boolean: Intercept_Point_Min_Within_Intercept_Range
// True if the minimum intercept point lies within the interceptor
range volume.
Boolean: Unknown Track
// True if track object has yet to be identified as a ballistic-
missile threat
Set: Tracked_Object
// Contains detected characteristics of a ballistic-missile threat
Multiset: Threat_Profile
// Contains sets of characteristics for known ballistic-missile
threats
String: Tracked_Object_Status
// Identifies status of Tracked_Object. Will be Active, Killed,
Hit, or Dropped
Integer: Unknown_Track_Life
// Time duration from detection to present time – expressed in
seconds.
Boolean: IPP_Within_Defended_Area
// True if ballistic-missile threat IPP lies within defended area
Real: IPP_Latitude
// Latitude of IPP
Real: IPP_Longitude
// Longitude of IPP

Real: Defended_Area_Max_Latitude
// Maximum latitude value of defended area
Real: Defended_Area_Min_Latitude
// Minimum latitude value of defended area
Real: Defended_Area_Max_Longitude
// Maximum longitude value of defended area
Real: Defended_Area_Min_Longitude
// Minimum longitude value of defended area
Boolean: Weapon_Status_Operational
// True if weapon is operationally available to fight
Boolean: Weapon_Launcher_Armed
// True if weapon launcher is armed and ready to fire
Set: Min_Intercept_Point
// Minimum intercept point at which an intercept at points
closer to defended area would result in negative consequences
to the defended area. Expressed in longitude and latitude.
Typed as a set.
Multiset: Interceptor_Range_Volume
// All points within the range of the interceptor. Expressed in
longitude and latitude.

Assertions:
Always Weapon_Assigned ⇔ ((Ballistic_Threat) ∧
(IPP_Within_Defended_Area) ∧ (Weapon_Available) ∧ (Inter-
cept_Point_Min_Within_Intercept_Range))

Always Ballistic_Threat ⇔ (Unknown_Track) Until
(Tracked_Object ∩ Threat_Profile) ∧
(Tracked_Object_Status = Active) ∧
(Unknown_Track_Life) < 60

Always IPP_Within_Defended_Area ⇔
 (IPP_Latitude <
Defended_Area_Max_Latitude) ∧
(IPP_Latitude > Defended_Area_Min_Latitude) ∧
(IPP_Longitude < Defended_Area_Max_Longitude) ∧
(IPP_Longitude > Defended_Area_Min_Longitude)

Always Weapon_Available ⇔
 (Weapon_Health_Operational) ∧
 (Weapon_Launcher_Armed)

Always Intercept_Point_Min_Within_Intercept_Range
⇔ (Min_Intercept_Point ∩ Interceptor_Range_Volume)

4.2 Model Checking

Software engineers should verify the functional specifications
via model checking. We define model checking as the system-
atic approach for testing functional assertions and substantiating
the desired system behavior in the model. Model checking is
not a proof of correctness; instead, model checking involves
creating functional models of a system and analyzing the model
against the formal representations of the desired behavior [8].

For the BMK, we verify the functional specifications using an
automated model-checking tool that can accept either developed
specifications or UML statecharts as discussed in [7], and exer-
cise the temporal-logic assertions over a number of time cycles.
We identify inconsistencies and breaks in logic through the use
of the model-checking tool. From the results of the model
checking, we intend to correct our specifications and the arti-
facts from the domain analysis as required.

However, our use of model checking is constrained by the state-
explosion problem: as the size of the state space exceeds the
memory capacity of the automated tool to check every trace in
the model [6]. Through abstraction of the BMK functions in
our specifications, we employ the concept of symbolic model
checking in which Boolean functions are employed to represent
transition relations and sets of states, using, for instance, a com-
pact representation of the state space (e.g., binary decision dia-
grams [4]), to simplify the BMK states by removing sub-trees
and redundant edges on the BMK’s Boolean decision tree. In
other words, we transform the complex logic decisions at the
bottom of the tree into simple Boolean statements so that we
can capture the essence of the system behavior in the upper
portions of the decision tree. By reducing the high number of
lower-level logic statements that develop very specific solutions
and have limited impact on the overall system behavior, we
should be able to manage the state-explosion problem.

As an example of the state-explosion problem in terms of the
BMK, consider the following assertion:

Always Intercept_Point_Min_Within_Intercept_Range
 ⇔ (Min_Intercept_Point ∩
 Interceptor_Range_Volume)

Note that the number of points in Interceptor_Range_Volume
could be large and that we are seeking to ensure that one spe-
cific point (Min_Intercept_Point) is within the set of points that
define Interceptor_Range_Volume. Rather than use model
checking to ensure that this condition is true, we could abstract
the assertion to either a True or False for Inter-
cept_Point_Min_Within_Intercept_Range. This will reduce the
number of traces through the model to verify this assertion.

4.3 Missile Defense System Architectural Framework

We are developing a framework in which the BMK connects to
software components used for calculations in battle manage-
ment as well as the interfaces to external components of systems
such as sensors, C2, and weapons. The objective of this frame-
work is to show a design of a battle manager as an integration of
various components rather than a single software application.
Here, as in our past research [2], we consider weapon systems
to be comprised of components rather than a single entity.

By treating the each software application and each software
interface as components, we believe that acquisition organiza-
tions can develop battle managers with more efficiency, reduced
development times, and higher quality than current state-of-the-
practice methods; a similar view is expressed in [5]. The high-
level architectural view for the BMK is depicted in Figure 1.

4.4 Prototype Validation

Software engineers should consider developing a prototype of
the BMK framework and demonstrating its behavior, capabili-
ties, and limitations. They should test this prototype to deter-
mine the degree of system-behavior predictability with respect
to state transitions and tolerance to battlespace environmental
variables.

While the demonstration is not intended to be an exhaustive
test, it will offer a degree of robustness to accompany the capa-
bilities of the BMK prototype; we use the term “robustness”
here to mean the degree to which a system can tolerate both
failures and faults. In other words, a robust system handles
unexpected states in a manner that minimizes performance deg-
radation, data corruption, and incorrect output.

We propose the following partial list of metrics be used as part
of the BMK demonstration:
1. Maximum number of concurrent tracks
2. Percentage of processed tracks (birth to death) to total

received tracks
3. Percentage of correlated tracks to total correlation op-

portunities
4. Percentage of discriminated tracks to total discrimination

opportunities
5. Percentage of weapon/target assignments to total

weapon/target pairing opportunities
6. Percentage of received weapon assignments to total

weapon assignment opportunities
7. Percentage of launch authorizations to total weapon as-

signment opportunities
8. Percentage of re-engaged tracks to total re-engagement

opportunities
9. Percentage of undesired state changes to total illegal and

out-of-bounds inputs
10. Percentage of system crashes and system lockups to total

illegal and out-of-bound inputs

BMDS Battle Manager BMDS Battle Manager

Discrimination Correlation Feature - Aided
Tracking

Rules of Engagement Rules of Engagement

Discrimination

Estimated Launch
Point Estimated Launch
Point Predicted Impact

Point Predicted Impact
Point Estimated Intercept

Point Estimated Intercept
Point

Correlation Feature - Aided
Tracking

C2 System 1

C2 System 2

C2 System 3

C2 System N

Sensor 1

Sensor 2

Sensor 3

Sensor N

Weapon 1

Weapon 2

Weapon 3

Weapon N

C2 System 1

C2 System 2

C2 System 3

C2 System N

Sensor 1

Sensor 2

Sensor 3

Sensor N

Weapon 1

Weapon 2

Weapon 3

Weapon N

Figure 1. Missile Defense System Architectural Framework

5. DISCUSSION

In our approach, only the basic functions of battle management
that will remain stable over time are to be placed in the kernel.
The BMK will manage the use of system’s computing resources
to ensure that all time-critical, battle-management events are
processed expeditiously. The development of the BMK begins
with articulating the capabilities, followed by refining the capa-
bilities into system requirements and properties, and finally into
test- and verification-ready models (i.e., representations of the
system-of-systems that are amendable to automated testing and
verification). To avoid the state-explosion problem, software
engineers should carefully model the fundamental behavior of
the BMK rather than a comprehensive specification of the
BMK.

Software engineers should consider developing the formal rep-
resentation of the BMK by using temporal logic to describe the
functional specifications of the BMK. They should verify the
functional specifications with the use of a model-checking tool
to determine the degree of system-behavior predictability with
respect to state transitions and tolerance to battlespace environ-
mental variables. By incorporating assertion error-handling
schemes developed from the functional model and verified by
the model-checking effort into the BMK, software engineers can
develop embedded automatic test generation capabilities.

Software engineers should develop the required BMK interfaces
as type interfaces that define the behavior of each interface and
the required specifications to realize each interface. Desired
timing-related behaviors of the system-of-systems should be
represented in the interface definition rather than depending
solely on messaging requirements; these interfaces need to be
constructed for all BMD elements.

For ease of integration and maintainability, we should develop
software components to encapsulate the features that typically
experience the majority of changes.

6. CONCLUSION

It is our belief that software engineers can develop a BMK that
addresses the five basic functions and fulfills basic warfighter
usage requirements for a battle-management capability. Acqui-
sition agencies within DoD can use the proposed BMK ap-
proach as a point of departure for developing systems-of-sys-
tems. However we should assess the utility of the BMK ap-
proach on real systems, including the BMDS, in order to con-
firm whether the approach both (i) contributes to the system-of-
systems exhibiting high degrees of system-behavior predictabil-
ity with respect to timing requirements and (ii) results in battle-
management kernels that support plug-and-play of system com-
ponents without violating the BMK timing requirements.

ACKNOWLEDGEMENTS

The research reported in this article was funded by a grant from
the U.S. Missile Defense Agency. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or

endorsements, either expressed or implied, of the U.S. Govern-
ment. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright annotations thereon.

REFERENCES

[1] Binder, R. V. Testing Object-Oriented Systems: Mod-
els, Patterns, and Tools, Reading, Mass.: Addison-
Wesley, June 2001.

[2] Caffall, D. S. and Michael, J. B. A new paradigm for
requirements specification and analysis of system-of-sys-
tems. In Wirsing, M., Balsamo, S., and Knapp, A., eds.,
Lecture Notes in Computer Science: Radical Innova-
tions of Software and Systems Engin. in the Future,
Vol. 2941, Berlin: Springer-Verlag, 2004, pp. 108-121.

[3] Caffall, D.S. and Michael, J.B. Developing Highly Pre-
dictable System Behavior in Real-Time Battle-Man-
agement Software, Technical Report NPS-CS-03-006,
Naval Postgraduate School, Monterey, Calif., Sept. 2003.

[4] Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H.
Progress on the state explosion problem in model check-
ing. In Wilhelm, R., ed., Lecture Notes in Computer
Science: Informatics - 10 Years Back. 10 Years Ahead,
Vol. 2000, Berlin: Springer-Verlag, 2001, pp. 176-194.

[5] Crnkovic, I. and Larsson, M., eds. Building Reliable
Component-Based Software Systems, Norwood, Mass.:
Artech House, 2002.

[6] del Mar Gallardo, M., Martínez, J., Merino, P., and Pi-
mentel, E. Abstract model checking and refinement of
temporal logic in αSPIN. In Proc. Third Int. Conf. on
Application of Concurrency to System Design, IEEE
(Guimarães, Port., June 2003), pp. 245-246.

[7] Gnesi, S., Latella, D., and Massink, M. Model checking
UML Statechart diagrams using JACK. In Proc. Fourth
Int. Symposium on High Assurance Systems Engin.,
IEEE, (Washington, D.C., Nov. 1999), pp 46-55.

[8] Lewis, G. A., Comella-Dorda, S., Gluch, D. P., Hudak, J.,
and Weinstock, C. Model-Based Verification: Analysis
Guidelines, Technical Note CMU/SEI-2001-TN-028,
Software Engineering Institute, Pittsburgh, Penn., Dec.
2001.

[9] Meyers, C. B., Feiler, P. H., Marz, T. In Proc. Real-
Time Systems Engin. Workshop, Special Report
CMU/SEI-2001-SR-022, Software Engineering Inst.,
Pittsburgh, Penn., Aug. 2001.

[10] Parnas, D. L. Software Fundamentals: Collected Pa-
pers by David L. Parnas, Reading, Mass.: Addison-
Wesley, 2001.

[11] Paul, R. Rapid and adaptive end-to-end T&E of joint
systems of systems. Presentation at the Fifteenth Annual
Software Technology Conf., Salt Lake City, Ut., Apr.
2003.

[12] Selic, B. The pragmatics of model-driven development,
IEEE Software, Sept./Oct. 2003, pp. 19-25.

[13] Szyperski, C. Component Software: Beyond Object-
Oriented Programming, Reading, Mass.: Addison-
Wesley, 2nd ed., 2002.

.

